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CHAPTER IV

DIRECTLY-TRANSMITTED GROUND PHENOMENA

ELASTIC ANALYSIS

A, INTRODUCTION

This chapter consists of the report by N. M. Newmark and Associates of the
results of & subcontract study under Contract DA-49-146-X2-073, Only minor
editorial changes have been made to fit this stuiy into the format of the overall
final report under this contract, The report was prepared by N. M. Nevmark and
A, Ang with the assistance of J. P. Murtha (who contributed the section on the
equation-of-state effects), A. R. Robinson (who contributed the analytical solu-
tion of the spherical problem), and S, Sutcliffe (who contributed the section on
the spherical solid with bilinear behavior), Computer programming for these

studies was done by J. W. Melin, G. N, Harper, and J. Rainer,

1, Statement of Problem and Objectives

The prediction of close range ground motions and pressures resulting from
nuclear explosions involves a wide range of meterial properties, ranging from
that of & purely liquid state to that which is essentially of the original solid
state, The transition between these two states of the material is gradual and

probably no definable interface exists between any two intermediate states.

For purposes of studying the effects of ground shocks, the total earth motions
generated by a nuclear blast are usually divided into those that are caused by
stress waves which are directly transmitted through the earth material from the
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energy released directly into the earth by a blast, and those that are induced
by stress wvaves vhich are initiated from the earth surface by the expanding air

shocks,

Based on a hydrodynamic model, Brode and Bjork* have successfully performed numeri-
cal calculations for & simulated two megaton burst in tuff, a soft rock material..
Brode and Bjork pointed out that their calculations for the low pressure ranges,
less than 8 kilobars, are not strictly valid since in these pressure ranges, the
effects of the plastic and elastic properties of the solid material become signifi-

cant,

Using the results of Brode and Bjork in the transition pressure range, (assumed
to be at a radial distance of 660 feet from the center of a 2 megaton burst), as
& starting condition, directly induced ground motions for a half-space solid were
determined numerically on the assumption that the material beyond the region of
the crater is homogeneous, isotropic and linearly elastic, Such an assumption,
of course, is not realistic since a plastic region would precede the elastic
region; however, the use of this assumption was dicteted by available means for
obtaining approximate answers, Results of an approximete study of the effect of
the equation of state indicated that no significant error in the applied pres-
sures is involved by neglecting a plastic region between the liquid and the
elastic regions, Aside from the half-space solid, the simpler problem of an
infinite space subjected to an explosive pressure applied in a spherical cavity

was8 solved,

In this study, no consideration of the effects of the expanding air blast pres-

sures on the surface was included although this can be considered without much

*Brode, H. L. and Bjork, R. L., "Cratering From A Megaton Surface Explosion",

RM=-2600, The RAND Corp., June 30, 1960
~2-
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difficulty, The solution of one of the half-space problems involves a situation
vhich is essentially similar to that of the actual air blast,

The apecific problems of which solutions are presented here are outlined below:

Problem l—A full-space with a spherical hole subjected to & wmiformly distri-

buted pressure (see Pigure 98a).

Problem 2—A half-space with a stress-free semi-spherical cavity; loads are
applied on the horizontal surface vwhich are exaoctly equal to the negative of the
tangential stresses from Problem 1, referred to as "correction" loading (as shown
in Figure 98b)., Results from this problem are referred to in this report as

"ocorrection" stresses, velocities, or accelerations,

Problem 3--A half-space with a semi-spherical cavity subjected to a uniformly
distributed blast pressure applied directly on the boundary of the cavity (see

Figure 98c).

Problem 4--The same as Problem 3, except that the applied pressure is uniformly
distributed only over the lower half of the semi-spherical surface of the cavity;
the pressures on the upper half of the cavity are distributed as P, sin 2¢ (as

shown in Figure 98d),

2, Methods of Analysis and Results

Problem 1 was formulated analytically and calculations for the radial and tangential

stresses were performéd. Additional results were also obtained by an alternate analytical
procedure for the infinite space subjected to an exponentially decaying pressure-

time curve (see Appendix I). Solutions for stresses in Problem 1 obtained with

-3-



the use of & spherically symmetric discrete model were in very guod agreement with

the corresponding analytical solutions.

Results for the half-space solids, Problems 2, 3 and 4, vere obtained exclusively
by the technique of digital simulation, Although no analytical solutions are avail-
able for direct verification of these results, there are a number of limiting con-
ditions which all the solutions satisfied, thus indicating the correctness of the
solutions, Furthermore, the mathematical consistencies of the models provide a
basis for ascertaining the correctness of the solutions if the numerical results are

reasonable from an intuitive standpoint.

All calculations were performed on large high-speed digital computers. In addition,
vhenever the discrete models are involved, the problems were simulated directly on

the computers,

All results are presented graphically, For the full-space solid, time functions of

the radial and tangential stresses, and of the particle displacements, velocities,

and eccelerations at points of varying radial distances from the burst are given.
Analytically determined solutions are given only for the radial and tangential stresses.
For the half-space solids, the radial and tangential stresses, and the radial particle
motions are plotted against time. These were presented for poinds slong lines with
different sngular positions from the horizontal. The solutions for the half-spaces
include other stresses (shear and circumferential) and the tangential accelerations,

velocities, and displacements; however, these are not presented here,

3., Starting Conditions
The original date from the calculations of Brode and Bjork, previously mentioned,

were presented in the form of contours connecting points of equal pressure,

-4~
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velocity or density at specified times. From these contours, pressure-time
relationships were reproduced and presented in a form that is more meaningful
for further study and analysis., These pressure-time relationships at radial
distances of 330, 495, and 660 feet from the point of burst, are presented in
Pigures 99 through 101, Corresponding relationships for the particle velocities

were also reproduced but are not presented here.

The problem considered in this study involve a full space with a spherical hole,
or a half-space with a semi-spherical cavity on the surface. The radius of the

cavity in all cases is 660 feet from the center of e two-megaton burst.

The pressure~time relationship of the applied pressure is shown in Pigure 102,
vhich represent the pressure-time curve from the calculations of Brode and Bjork
at 660 feet directly below the burst. The decay portion of this curve is extra-
polated by inference from available measured date. In the solutions by digital
sirulation, this pressure is actually applied at a radial distance of 645 feet
from the point of burst, and not at 660 feet, for convenience in treatment of the
lumped-mass model, There is therefore a slight discrepancy between the analytical

and the lumped-mass solutions; this is not of significance in the results,

The velocities at the surface of the cavity, which were also calculated by Brode

and Bjork, were not considered in this study,

B, EFFECTS OF THE EQUATION OF STATE

In the present study of the stress field outside the crater region, the pressure-
time relations at some radius as obtained from the hydrodynamic model of Brode and
Bjork are used as the boundary stresses applied to an elastic solid. Theor-
etically, the pressures derived from the hydrodynamic model results should be

adjusted in order to provide a consistent boundary condition. The need for this
5=



adjustment results from two factors: namely, (1) the wave propasgetion velocity
in the elastic molid will be less than that in the fluid model, and (2) the par-
tiocle velocity at the boundary between the fluid and solid regions should be the
same in both media, That these two conditions are not automeatically satisfied
is the result of omitting the plastic or transition region which in the real
situation, separates the hydrodynamic and elastic regions, It is apparent that
any procedure adopted to adjust these pressures can only be an approximation,

In the subsequent discussion it is shown that the necessary adjustment appears

t0 be small and may be neglected without serious error.

If the mathematical model is assumed to consist of compressible fluid and elastic
solid regions, a wave propagating through the fluid could be pertially refleoted
at the boundary separating the two regions, The relations which must be satis-
fied by the incident fluid pressure and particle velccity, p and ﬁf, and the

transmitted stress and particle velocity, o and §, are as follows:
p+ip=o (1e)

8, - A, =1 (1b)

vhere Ap and Aﬁf are changes in the fluid quantities resulting from the reflec-
tion. The relationships between stress and particle velocity in both the
incident fluid and solid waves are time dependent; however, at the front of an

ideal wave the following relations exist -

A

4= P—" (28)
scs
P

ROy )

* Force equal change in momeutum per wnit time.
-6-
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vhere £ and ¢ sre density and vave velocity, respectively, and the subscripts
refer to the solid, s, and fluid, £, Although the fluid pressure pulae shapes
caloulated by Brode and Bjork are not truly idesl, Equation (2b) is approximetely
correct for the initial part of the pulse. The application of Equation (2b) im=
plies & value of the parameter p/ﬁf vhich is not time dependent for a given
radius, The following table summarizes the values of this parameter for the
pressure~time and velocity-time pulses in the fluid at a range of 200 meters:

Time b i‘
m sec kilobars
(kilobar-sec)/kilometer
58 3.4 45.4
65 5.0 48,6
74 4,5 45.0
82 3.0 32,0
85 2.4 31.5

These date indicate that the assumption of a constant value for p/ﬁf is reason~

able, at least for the principal part of the pressure pulse,

If it is assumed that & relation similar to Equltion (2b) is valid for the
reflected pressure and velocity, i.e.,

8, = ok (3)
fr = gy

the relation between the incident and transmitted stresses is as follows:

o= Thy (4)
Pse
vhere y = P—.;g—
-
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In Equation (4) o represents the transmitted stress that is developed when a plane
wave impinges on the boundary between two different media. As such, it would be

correct at least at the shock front,

Since Equation (4) represents an acoustic reflection, it is desirable to calculate

the reflection factor for plane, finite amplitude waves in the fluid reflecting from

a rigid wall, The equation of state used by Brode and Bjork for tuff is

10

1 o10

0.70Tn ( )2 10%0

+ (5)
10° + (E/101°)

vhere P = pressure in dynes/cm2
E = specific internal emergy in ergs/gm

n = ? : = initial density = 1.7 gm/cc
0

For pressures less than 10 kilobars and n less than about 1.5, Equation (5) may be

approximated as

10 (_E 1/2 |
== (6)
1010

p=~5.3x10

Combining Equation (6) with the Hugoniot energy equation,

1

=3 0-2) (-7 (7)

o
results in the following pressure-density relation:
p = 8.25 x 10 [PP)-(—%}Q‘? (8)
for the ambient pressure, p , equal to zero, As a check on Equation (8), wve may
calculate the wave velocity, €y for waves of small amplitude;

-8~
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a
¢ = ‘&P,Z = ~ T.200 ft/sec

for very smsll values of 7/0— o The value of c¢_ usually quoteé for tuff ranges
° )
from about 6,000 - 8,000 ft/sec.

Vhen a finite amplitude wave undergoes normal reflection from a rigid boundary,
the ratio of the excess pressures behind the reflected and incident waves is given

by Cole* as follows

P, - P, £ %-1
=1+ () (9)
o £ - L
/ao /oo

vhere /o' is the density behind the reflected shock fromt.

The ratio of reflected to incident pressures, Pr/P may be calculated using
Equations (8) and (9). For an incident pressure, p = 9 kilobars, pr/p = 2.2,
For the same incident pressure in water, pr/p = 2.9, Thus the reflection factors
for finite amplitude waves in the range of interest do not appear to greatly exceed

the acoustic reflection factor, which is 2.0,

Approximete values for the wave velocity in the fluid can be derived in several
ways, each of which yields about the same result, Using ideal shock relations
and the calculated maximum values of p and ﬁr from Brode and Bjork the following

results are obtained:

o B
Netors t Ty

£t/sec
150 8,650
200 8,100
250 8,030

*Cole, R,H,, "Underwater Explosions", Princeton University Press, Princeton,
New Jersey, 1948,
9=
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Thus at a range of 200 meters the appropriate value of (/ = 8,100/7,200 = 1,12
and from Equation (4) ¢ = 0,945 p, This reduction in the fluid pressure is
sufficiently small that it may be neglected, Thus the applied stress for the

elastic solid may be taken as the fluid pressure at the radius of the boundary.

The applicability of the results of Brode and Bjork as boundary conditions for
subsequent calculations in media other than tuff depends upon several factors
ineluding the effect of differences in the equation of state between any other
material and that assumed for tuff, Of particular importance is the effect of

the equation of state on the pressure~time variation from point to point.
Unfortunately, no calculations are available for any other rock or soil meterial, A
qualitative estimate of the effect of material properties can be made by comparing
the peak overpressure-distance relation for water and a gas with the results for

tuff,

The variation of peak pressure with vertical distance below ground zero is given
for tuff in Figure 103 along with similar results for water and an ideal gas with
Y= 3. The RAND Corporation calculations for tuff were terminated at a peak
pressure of about 5 kilobars, At these lower pressures, the peak pro;su:ro varies
approximately as the inverse three-halves power of radial distance, while at
higher pressures, not shown in the figure, the peak pressure variation is
approximately like the inverse cube of the distance, The dashed lines in the

figure are extrapolations of available data,

The ideal ges solution was also obtained by Brode and Bjork using the hydrodynamic
model, Here the peak pressure varies as approximately the inverse cube of the
distance for all the ranges calculated, A comparison of the tuff and ideal gas

~10~-
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osloulations indicates that for a given range the peak pressures between the two

materials differ by less than a factor of sbout three.

The relationship for vater shown in Figure 103 was derived from the peak water
overpressure-distance data for a deep underwater explosion*, In deriving the
relation for water it was assumed that the weapon yield was 1200 KT or twice

the total energy assigned to the rock half-space at time zero by Brode and Bjork,
The peak water pressure varies approximately as the inverse of the distance for
pressures of about O,1 kilobar, As in the previous case, leass than a factor of
three separstes the curves for the tuff and water for peak pressures ranging from

about 0,1 to 10 kilobars,

On the basis of these comparisons it seems reasonable to expect that differences

in the equation of state for various rocks and soils would not cause differences in
the peak pressures found using the hydrodynamic model of more than an oxrder of
magnitude and perhaps much less, This observation, along with the preceding
discussion of the bomM conditions for the elastic model suggest an approximate
method of extending the RAND Corporation calculations to materials other than

tuff, Since the peak pressure~distance data do not appear to be too sensitive to
significant variations in the equation of state, it may be assumed that the tuff
results of Brode and Bjork are applicable to other types of rock and perhaps soil
materials, Equation (4) may be used to adjust the pressure input for the elastic

body 'Eo compensate for the differences in density and wave velocity between tuff

o

and a given material, It should be emphasized that this procedure is recommended here

because no close-in caloulations are available for materials other than tuff. When

such calculations have been made, another procedure should be devised.

*Glasstone, Samuel, The Effects of Nuclear Weapons, U. S. Atomic Energy
Commission, April, 1962
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In all of the problems, the meterial of the solid is assumed to be linearly
elastic, Values of the elastic constants of the so0lid are assumed to be spproxi-~
mately those of materials similar to tuff, a material in which the calculations
of Brode and Bjork apply, These values were determined or inferred from sveil-
able field data, and are as follows:

5

Lame's constants: A =3,9x10 psi

H =3.5%10 pai

Dilatational wave velocity, ¢ = 6,000 fps.

5

These values correspond to a Young's modulus of 8,8 x 10” psi and Poisson's

ratio of v = 0,265,

C. -;I'IEORETICAL SOLUTION FOR INFINITE SPACE

Consider an infinite homogeneous, isotropic elastic space with a spherical cavity
of radius a, Let the cavity be loaded by a normal stress O (e, @, t), vhere

© and # are angles locating a point .n the surface of the sphere, The stresses
will usually be compressives however, the ordinary sign convention of the theory
of elasticity, tensile stresses positive, will be used for convenience, In vhat
followe, no distinction is mede between the initial and final configurations of

the medium, so that the ordinary theory of elasticity applies,

For a radially symmetric load, it is apparent that the only displacement is the

radial displacement u. There are only three non-zero stress components, 0

%0 and c¢¢. For small displacements the acceleration in the radial direction
=3 U S D ;

is s =i, the strein £ = 5 ,fo =€y = . The equation of motion in

the readial direction is

-] 2=
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2ar T O T =%
or
%G;’ (e W _ (20)
Expressing the stresses in terms of the strains, we have
=2A+2y€r=h(-§—;‘+rﬂ) *3’3_:
%0 = g = 7\A+2)1€°=2(-g—:+%)+9z;—‘
The equation of motion, Equation (10), becomes
(7\+2}x)%+ 2(Q +2p) %-g%-z(/\ +2;z)-‘:5=pii
or
3r o TR b 7—‘,’,—@)u=-c-%f-a )

Now we introduce the displacement potential @ such that u = %-g The left side of
Equation (11) becomes

8,239 _a (%, 249
ar3 T 32 r2 roogr "y.2 rar

The right side is just
2

1 2
AT

so that the equation of motion is satisfied if

ﬁ.k-z-ﬂ__:#ﬁ (12)
r

The general solution of this partial differential equation may be obtained by

noting that ifweset¢=-11:¢,

AR e

13-
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a2¢_lbz¢' 2. 3#4_2_&:
ar2'r arz r2 gr r3

2

The left side 62 Equation (12) is then equal to L ) 51 80 that the scalar wave Eq, 12
r

becomes 1 —-K

?
T rcz 352
P
The general solution of which for outgoing disturbances is
¢ =F(y - cpt ). Here, °p = (7k—.;'2£)]‘/2

is the P-wave velocity, The displacement potential is now of the form
1
g = = F(r - cpt)
Straight-forward computation yields the following quantities:

_f .i. ' - e t) -l—F(r - e t)

u=
Jr | 2
6 .a_u_'lF _2_F0+2_F
dr r 2 3
r r
o =-A-+—EEF"(r—ct)-ﬂF'(r-ct)+5‘EF(.r-ct)
T r P r2 P r3 o)
- A Q
GOO_GW—I‘F' 1‘2F'+r3F

The maximum stress difference is

- (L 3 3
O -000_2)1(1' F! r2 F! +r3 F)

It can be seen that knowledge of stress at the boundary r = a gives us a differen-

tial equation of the form
AF'' (§) -BF' () +CF(8)=12(§)

vhere £ is a known function and A, B, C are positive constants, From the form of the

argument E =T - cpt, it follows that § becomes smaller as t increases, r remain-

1 beed  pend  paed

e

ing constant., When the disturbance starting at r = & at time zero reaches the point
r, we have r - cpt = a, For wvalues of g > a the function F and all its derivatives

-14-
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vanish. Ve may have a stress discontinuity wvhen the disturbance begins, but no
displacement discontinuity. Suitable initial conditions for the problem are

F'(a) =P(s) =0
The apparent negative damping indicated by the negative coefficient of the P' term
in the differential eqﬁtion for F is explainable if one remembers that g will be~
come smaller as t increases, In time, the solution damps out for a limited distur-

bance, as it should,

If we no longer restrict the pressures on the spherical cavity to be radially sym-
metric, the problem becomes somewhat more complicated, It is possible, however,

to solve this dynamic elasticity problem in such a manner that, as before, only
the solution of ordinary differential equations is required in the numerical evalua-
tion, This procedure avoids the difficult and tedious computation of values of a
Fourier integral, the unfortunate feature of the classical approach. Of course,

in the problem as given the stresses on the "top half" of the spherical cavity are
at our disposal. If we choose the stresses to be antisymmetric with respect to the
surface (the plane z = 0), this plane will be loaded by only shearing tractions.
If, on the other hand, we choose a symmetric distribution, the plane is loaded by
only normal tractions, In either case, these loads must be removed by other »

methods.,

The derivation will be given in general terms and then specialized for two cases,
The first of these will be the radially symmetric case already treated; +the second
will be the lowest mode of the antisymmetric case, In what follows, Cartesian
Tensor notation will be used throughout the cmpu£ations. A sum over n will be

-]5=



meant only if the sum sign occurs explicitly.

It u; is the displacement vector, the Navier equations of elasticity read

) D%, 9%,
(7\+P)-5_:A:-.' }"aijxj =P t;

1

3

+

e

vhere A, the dilatation is

x.' We first express the displacement vector as the
3

sum of two vectors, the first corresponding to no rotation, the second to no dila-

) 4
Y =7§%+ 6131:7:—:

1

tation.

vhere £ ijk is the alternator, Substituting into the equations of motion, we have

Mo g B @+ p h{— @) + €ijk—§;; W) - P[-(,—?‘: (—3—})
v € -fg (—%—{5)]

These three equations are satisfied if (A + 2);)V2¢ = P¢ a.nd)szwk = P %.

1/2 1/2
The constants, (—7‘——;—22) = cpra.nd (%) / = ¢_, are the propagation velocities of
P and S waves, respectively., We see that the problem has been reduced to solving a

scelar and a vector wave equation.,

Consider first the scalar wave equation., A convenient way of solving this equation
in a form suitable for use when spherical boundaries are involved is to note that
the relevant solutions of the "homogeneous" equation v2¢ =0is @ = . s where K
is a so0lid spherical harmonic of order n, Three properties of the solid spherical
harmonics will be used. The third one will not be needed until almost the end of
the computations.

=16=
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b
1, V%n=00r %, xi=0

2, K% is homogeneous of order n in X Xy and x, 80 that by Euler's theorem on

homogeneous functions,x L = nk",
i90 x,

3. The K are orthogonal over the unit sphere, Over a sphere of radius & we have
] K'Kds =0, m#n
8
[

2n + 1 y =1

]xﬂx%.: An_ 20+ 2
s
a

We nov use the idea of variation of parameters and seek a solution of the equation

2, 1 =
V¢—¢2¢
P

in the form £ (r, t) K%, vhere ¥ - x.x.. Ve shall find the restrictions on the

functions fn by substituting this solution into the wave equation for ., For this

oodl woa %
purpose we requir %, x, 0%, :

i
32¢ o3 X %5 ii afn afn e |
P AR Ly rab il e Fab

vhere éij is the Kronecker Delts, mero if i £ j, 1 if i = j (éii = 3), Using the

properties of the Kn, wve have

-] 7=
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The wave equation now becomes

[az §1+n2 bf . L azfn
T2

ar r (}r c, btz 3
and is satisfied provided that
2 2
0ty 20+n) 38 1 0% 13)
ar2 r orT °p2 6‘52

Equation (13) is a linear hyperbolic partial differential equation in the two variables
r and t of a form whose general solution is known. For n = O we find
2
)2 fo,2 9, 4
br Er cP2 atz

the solution of which is

1 1
fo == F(r - cpt) + < Fl(r + cpt).

Ve shall only retain the first term, which represents an outward moving disturbance.
It may be verified that if fn is a solution of Equation (13),then -:f-ad; (fn) is a
solution of Equation (13) for n replaced by n + 1, It follows that the part of the

general sclution of Equation (13) we are seeking is

19.\"1
fn (r, t) = (; T;) oy P(r - cp’t) (14)

Ve now turn to an examination of the vector wvave equation Y Vk —2- l// As
before, we first consider solutions of the equation Y Wk = 0 and then mltiply
by gn(r, t). The choice of solution is governed by the condition that, for a
loading of the sphere symmetric about the X, axis, the displacements lie in the

~]8~
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planes of the meridians, As will be seen later, a convenient form of the solution

is the one shown below:
oK®
Ve = 8,(rs %) €y % B

vhere K" is a solid spherical harmonic of order n, Ve prove first that

V(Elak 1T
. éx“
st is zfg(eljklr’“ uk(éu?i” &x)

and
X AR bzx" A 3k

T_'& (elak i ax =€ijk T__X ax‘l- Gu ax au xi ‘T_W ) &)=0.

Furthermore, it is easy to see that (. —g— is homogeneous of degree n in X))

ijk X
x, and X,. It follovs immedistely that g sat:.sfy equations similar to Equation (13),

2 2
0% 20+ 3% 1 0% (15)

02 T 0T .2 a2

As before, the solution of interest is

g v =CL L6 (r-q¢t) (16)
For an axially symmetric problem, this is all we need for the vector potential., We
Wk

mey now compute the displacement vector u = ax + €. ik T Computations will
be carried out for a single n, For the final solution, of cou:rse, & sum on n will
be required. The only part of the computation that is not self explanatory is the

use of the identity

€1 Copie = Cim 83p = Oip O3
This last relation together with the first two properties of the K given above

leads to
-19=



it dg,
=(n3:n+a Kn+[f-(n+1)gn-r-5—]-%§:;

The (mathematical)strain components may now be calculated:

bu du, Ju.
1
STRLp it PO

32 azf X, X agn df 8,., x. x,
e R n R aLRTE S ks B
of x
1 & D e )
+5(n +—a?g) (rl-ﬁj+;l bxi)
.34 62 ix s x
1 &, OK® Ik
+E[Trn_(n+2) 3 r arz]{ﬁl' axi+;£—xJ
dg,] ¥
+ ’.f ~-(atl)g -r ar}-—;—bxi 3 '
e
I n .o
4 cp2 bt"’

" The stress components aré found from the strains by epplying Hooke's Law for an
isotropic solid:
o34 = Aa 5i;j + 2}1€ij

We are especially interested in the tractions on the surface r = a, The unit

) . Xi
normal is just ~I
r=a
r x,
T.=o0.,.n =-—10‘..)
j iji r ij
2
r A Jf x we  nXs
il az“;lx"-z»{[nsn*“fn];““
Cp t
+—(2f' -Zgn-rgn) (—‘1Kn+ bl(n
J
+[fn-(n+1)gn-rgl'1]1——-)-;1 ——aflf
J
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Ve see that the traction is in the form

;;j -1z“+ —’

vhere N111=-—7\-2-'f;;1 -2}1 gn+f)-2).1((2f -2gn-‘r.gx'1')2

[
P (17)
L 1 ' _ - _ I}
N;_z);[z (2t! - 2¢ - rg) +;)-(f (@+1) g -rg)
Here primes denote differentiation with respect to r.
The known traction on the boundary is a normal pressure Op (¢, t) in the

r==8

axially symmetric case. It is convenient to expand the stiress in apherical harmonics.

(In vhat follows, the so0lid harmonics will correspond to surface harmonics of sonal
type only by virtue of the axial symmetry). The expansion reads
o_ (s, @ t) =Za(t)Kn onr =a.
T L n

Multiply both sides by K" and integrate over the sphere of radius a,

,[crr (s, @, t) K as =Znan(t)J;KnKmds v
Y

%a
By the orthogonality properties of the K" we have
2m + 1 m
8 (t) =—505~ f o K ds
m 41“211#2 J T
a
From Equation (17) we have

r

e B R MR- D
J n

o

J rr n r
That the vector equation should yield solutions for Nl; and N: ‘may be seen by noting

x,
that ;‘1 is a radial vector and gf lies in the meridional plane if K corresponds
3

2]



to zonal harmonics, Ve are then dealing with just two components at each point so
that two functions should be determined. We expect that N‘: = 0 since it multiplies
the only vector in the equation not in the radial direction. Formal computation

gives us this result and assures us that the modes decouple,

x,
Let us multiply Equation (18) by ;-1 Km, sum and integrate over the sphere of radius

C Pk [Ben] He

n a
X. X,
_Zanm [ #ieu,
n ®a
or M @Dt G @Y s @ 09

m
We also multiply Equation (18) through by %' , sun and integrate over the umnit
J

sphere., For this purpose we shall require the surface integral,

K* k"
'3-— bx ds.

We note first that thls surface integral is simply related to the integmal of the

same product over the solid sphere by virtue of the homogeneity of the functions

AR f(rn+m-2() arj Ry

v, ()xJ ax a'x ax

jbx“_g_ﬁ

n+m+1

However, the volume integral can be evaluated by the divergence theorem:

-2
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3xj J axj

s s

=I ml(nl(mds

Sa

VWe see then that

j%%—?da:«tmu, n=m O, n#mnm
s J
'Y

Using this result, we find

4 2m+l 2m 4 2m+1
N‘;m (Z\I—l) a +N‘;m4m =-am(t)ﬁfa. (19)

Equations (19) and (194) may be solved simultaneously to give

NI; =0, NT ~ -q.m(t)

These results,together with Equation (17),provide us with two coupled ordinary dif-
ferential equations if we recall the forma of the solutions for £ and g, Equations

(14) ana (16).

Forn:O,vehlveKozlmd
_2 35 "

- = =0 (t)
02 atZ 9"!0 rr r=a
P a 0 hned
The Ng equation disappears since az =0,
1 J
fo =3 F(r - c t)
27
3 20 _cZIF"(r-ct)
.2 pr
-23-
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This gives us precisely the same Oy Ve derived before.

!

. Lpr,2
=-5SF +ZP +5F
r r

For n = 1, the lowest antisymmetric mode, we have K = x, (or 2). It will be

remembered that £ = O is the plane boundary., We have that

; n/2
' f crr(¢,t) K'ds = 4ma’ f on_(¢, t) sin § cos g ag ,
e n/2 °
n.l(t) = -3:[ crr(¢_,t) sin @ cos @ a¢
°

The solutions for f and g are

1 1 .
£ = ;%[; F(r - cpt):l )
e=d 3 doe- o]

The differential equations expressing the boundary condition read

=-—E7‘:2 - LE*; F"+-1-§EF’ -%F-%G"+I—§EG' -1—?(}
r r Tr

IT
r r

=+ ar at r=a

2 i, 6 o 6 T 3 . B 1 6 . _
-Z P +3F -7 F+376 -5 6 +36 -7 G=0atr=a.
r r r r T r

Stresses may be expressed in terms of the strains, The most interesting stress

components are the shear on z = O, vhich must be later removed,and the stress

033 or o . directly beneath the center of the sphere.
Lo g _Sug g _mgl, g
031 _czr_zF 3F+4F rG+2G
z2=0,y=0 r r r r
-%G'+-6%G; (r =x)
r r

[P
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o =
33x=0,y=0 r T r r

+}%G' -L?G; (r = =)
T T

It is not difficult to see how the ideas of the above derivation may be extended to

the case of spherical layering, In all but the ou er layer, we should have to

allow incoming as well as outgoing waves, that is, solutions of the form )

(%- -?;)n % F(r 4 ct). If there are s layers, we have s - 1 interfaces where two

traction components and two displacement components must match (except when n = 0).

At the inner surface, we have two equations, as in the present problem. The total

number of (scalar) boundary conditions is then 4s - 2, Counting both incoming and

outgoing waves we have four F's and G's in each layer but the outer, and two in

the outer., The method will then give 4s - 2 equations in 4s - 2 unknowns, It should

be noted that these are coupled ordinary differential equations with given initial

values, & type of problem well suited for solution on a digital computer.

The solution to Equation (15) for a radially symmetric load was programmed for the
IBM 7090 camputer using numerical integration of the displacement potential. Radial
and tangential stresses were obtained for two media., The firat has 7] = 390 ksi,

J = 360 ksi and a density such that the p - wave velocity, cp, was 6,000 fps, The
corresponding Poisson's ratio is 0.260, The second problem has A = 590 ksi,

P = 260 ksi and the same densi‘t.yJ so that the p-wave velocity remeins equal'to

6,000 fps but v = 0,347,

The radial stress at various depths proved to be independent of Poisson's ratio and
thus the radial stresses for both problems are shown in Figure 104, The maximum
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tangential stresses are nearly proportional to A . These are shown for various
depths in Figure 105 and 106 for both problems,

D. SOLUTIONS BY DIGITAL SIMULATION

Two discrete models of the }lumped mass-spring type were used in the present study.
The model used for the solution of Problem 1 is a spherical model, whereas that
used in solving Problems 2, 3, and 4 is axially symmetric. The equations of motion
of the discrete systems are identically the same as the differential equations of
the corresponding solid continua, This is demonstrated in the following discussion
for the spherical model, A similar demonstration can be made for the axially sym-

metric use.

In Figure 107 is shown a typical arrangement of the mass points (0, 1, 2, ...) and
the stress points (a, b, ¢, ...) 0f the spherical model along the radial lines.

The masses of the solid are concentrated at the mass points, vhile the springs pro-
vide the average resistances of the solid, The stresses in the springs are average

stresses defined at the sress points,

Applying Newton's second law of motion to a typical mess point "O" the equation of

motion of such a mass point in terms of stresses can be derived as follows:

2 2 _
o® (£, By -0 () & -4 & B

1 2 .
=7 (= 0) A £,
where:

]

average radial stress at stress point "a",

ao «%

average tangential stress at stress point "c",

26~
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radial distance of stress point "a" from the center,

B

= mass density

iio = redial acceleration of mess point "O"
) = grid distance, see Figure 107,
A8 = incremental angle, see Figure 107,

- A - i
ra_(r°+2) i rb'(ro-z)

Simplifying, the above equation becomes,

8 b 0 o
o, =, 2(csr - oe) o
2 + T =Q u

o
vhich is identically the same as the central finite difference analog of the dif-

ferential equation,

bcr . 2(c5r - oe) ) a_zu
Jr T - at2

This last equation can be recognized to be the differential equation of motion of

& spherically symmetric solid.

Problem 1 - Infinite Space

This problem involves an infinite solid space with a spherical hole having a radius
of 660 feet and subjected to & uniform blast pressure on the boundery of the hole,
Results of the numerical calculations with the spherical model are presented
graphically in Figures 108 through 113, Figure 111 shows the pressure-time relation-
ship of the radial stresses for points along a radius, while in Figure 112 are shown
the same stresses plotted ageinst the radial distance for the specific times in-
dicated. Similar pressure-time plots for the tangential stresses and the particle

accelerations, velocities, and displacements are presented in Figures 108, 109, 110,

and 113,
-27-



Problem 2 ~ Half-Space with "Correction" Loading

In Figure 98b is shown a meridional section of a half-space which is subjected to
& "correction" loading at & specified time, tl. This correction loading is exactly
equal to the negative of the tangential stresses (see Figure 113), The hemispherical

cavity is free of stress in this case,

The stresses and particle motions derived from this problem when superposed with
the corresponding stresses and perticle motions of Problem 1 represent the solution
of the half-space subjected only to & uniformly distributed pressure applied at

the boundary of the semi-spherical cavity,

Graphical results representing time variation of stresses and particle velocities
are given in Figures 114 through 120. Numerical results for points along the sur-
face and those along lines inclined at 15 degrees and 30 degrees from the horizontal
are presented, Beyond the 30 degree line, the results are relatively small and are

not presented.

The results from this problem are referred to as "correction" stresses, velocities,

or accelerations,

Problem 3 - Half-Space with Uniform Losding

This problem involves a half-space with a semi-spherical cavity with a radius of
660 feet a® shown in Figure 98¢. A uniformly distributed pressure having a pres-
sure~time relationship as that given in Figure 102 is applied on the entire boun-
dary surface of the semi-spherical cavity.

—28-
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Plots of the redial particle accelerations and velocities, and the radial and tan-
gential stresses as a function of time are given in Figures 121 through 130, The
results for points along lines having different angles of inclination, @, with the
horizontal surface are given; specifically, the results for lines with ¢ = 0,

15, and 30 degrees and for points along the vertical line (@ = 90 degrees) are pre-
sented, The results for the points along lines with other angles of inclination
(§ 7 30 degrees) wvere not presented since they are almost identical with those of
the corresponding points along the vertical line, The results along the vertical
lines are also identical with the results for the full-space. This, therefore,
means that the full horizontal surface does not significantly affect the results

for regions in the neighborhood of the vertical axis,

The results of this problem should be identical with the combined angwers of Pro-
blems 1 and 2. A close examination of Figures 108 through 130 will reveal that

this is indeed the case with the solutions presented here.

Problem 4 - Half-Space with Non-uniform Loeding

A meridional section of the half-space of this problem is shown in Figure 98d.
The problem is geometrically the same as in Problem 3 except that the distribution

of the applied pressure is uniform only on the lower half of the spherical surface,

vhile on the upper half, the pressure distribution varies as p sin @ for 0S g < 45

degrees, Such a pressure distribution closely resembles the corresponding results

of Brode and Bjork.
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Results presented are for radial and tangential stresses, and for particle displace-
ments, velocities and accelerations as shown in Figures 134 through 153, Other
stresses and particle motions were computed but are not presented here, The re-
sults are plotted as functions of time for points of increasing radial distances

along lines with four different angles of inclination from the horizontal.

The results along the lines with g =45 degrees and ¢ =90 degrees are very close
to each other, From this, it follows that the results in the region between the
45 degree line and the vertical should be almost identical with the corresponding
results on the vertical line. It should be pointed out that the results on the
vertical line are also identical with those of the full-space, thus indicating
that the horizontal boundary of the half-space has negligible influence oa the

ground motions and pressures in the region close to the vertical.

E. SIGNIFICANCE OF RESULTS AND CONCLUSIONS

1. Discussion of Results

The neglect of a plastic region between the hydrodynamic model and the linearly
elastic solid has an insignificant effect on the pressure-time relationship assumed
in this study. However, since the study was predicated on the assumption of an
elastic solid, and because of the extremely high stresses experienced by the solid,
vhich would invariably cause plastic flow in the regions under consideration, the
results can not be strictly applicable to materials which are inherently non-

linear or which exhibit elastic properties only at low pressures. The calculated
ground motions and stresses, therefore, must be considered in this light in relation
to actual earth materials.
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Comparing the results of the full-space with the corresponding results of the half-
space solutions indicates that the horizontal surface boundary has negligible effect
on the conditions in the lower regions of the half-space. This is clearly supported
by the almost identical results for points on e diagonal line with those on the
vertical line, and also by the closeness of all of these relationships with those
of the full space. This fact is also verified by the results of the "correction"

solutions which show that the "correction" stresses and velocities decay rapidly

as & function of depth. In the regions close to the horizontal boundary, the tan
gential stresses are significantly affected by the boundary; +the peak tangential
stresses is increased as can be seen from Figure 127 through 130, with its maxi-
mum value somewhere along the line with a 15 degree angle of inclination from the
surface, A surface effect gave rise to the tangential stresses in the vicinity of
the surface, as shown in Figure 127, The radial stresses, on the other hand, are

affected to a much lesser degree by the surface boundary; +the magnitude of the

radial stresses influenced by the boundary are shown in Figure 116 and 117.

Since an expanding air blast over the surface will induce normal pressures, which
are essentially similar to the "correction" loading used in Problem 2 although

the sir blast will have a different pressure-time relation and higher peak values
than those of the correction loading, the effects of an air blast can be expected
also to be similar to the effects of the correction loading and would be pronounced
only in the regions between the surface and the diagonal. In the lower regions

of a half-space, the directly.transmitted effects will predominate,
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In all cases, the radial velocity-time curves are similar to the corrupondix;g radid
stress-time curves; however, these two functions are not simply related as in the
simple one-dimensional case, Both the peak values as well as the rise times of

the radial stresses, velocities, and accelerations decay with increasing radial
distance. The peak values of the tangential siresses also decreases as a function
of the radial distance, in addition to its relations with the angle of inclination

with the horizontal surface.

2. Decay of Peak Radial Pressures, Velocities, and Accelerations

The rate of decay of the maximum radial pressures at increasing radial distances

are summarized in Figure 133 and 156, These show that along the vertical axis of
the half-spaces, the radial pressures decay as the inverse power of about 1.15 of tle
radial distance, which is precisely at the same rate of decay as the radial stresses
in the full-space. At the surface, the radial pressures decay more rapidly and is

approximately with an inverse power of 1,40 of the raedial distance,

The decay of the peak radial velocities as a function of the radial distance fol-
lows the same trend as the radial stresses along lines of the same angles of in-
clination with the horizontal surface., These are demonstrated in Figures 132 and
155, Significantly, these also show that along the vertical axis of the half-
space, the peak velocities decay with the same inverse power of 1.15 as the de-

cay of the peak velocities in the full-spece solid,

The maximum accelerations decrease with varying inverse powers of the distance,
approaching inverse powers of 1,80 at the surface and 1.50 along the vertical axis
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at greater radial distances. At closer distances, the decay tends to be less

rapid, s shown in Figures 131 and 154,

It must be pointed out that the rate of decay of the peak values of the stresses,
velocities, and accelerations for regions between the vertical axis and the dia-

gonal is about the same as the rate of decay along the vertical axis.

These decay rates are for the elastic condition assumed in the analysis, and may

be slower than actual decey rates in real earth materials,

3. Specific Conclusions

The following specific conclusions may be derived from the numerical results pre-
sented here:

(1), The region below the diagonal line for the half-space remains essentially
the same as & full-space; that is, the horizontal surface boundary has
practically no effect on the conditions within this region,

(2). Primary effects of the horizontal boundary are limited to the region
above the diagonal line. These effects are most pronounced on the sur-
face and decrease very rapidly at greater depths., Tangential stresses
in the shallower region are significantly affected by the boundary,
vhile the radial stresses are affected to a lesser extent.

(3). The effects o normal air blast pressures can be expected also to be
limited to the regions above the diagonal.

(4). The decay of the radial pressures with increasing radial distance is
less rapid for an elastic solid when compared with the decay in the

=33~



(5).

(6).

(7.

(8)0

hydrodynamic model of Brode and Bjork, Inverse powers of 1,40 to 1,15
of the radial distance (depending on the depth) were determined in the
present study as canpared with inverse powers of 3 to 1,50 for the hy-
drodynamic case,

Maximum tangential stresses decrease faster with depth from the horizontal
surface than with the radial distance,

The rates of decay of the radial velocities are the same as the decay
of the radial pressures, Radial velocity-time curves are similar to the
pressure-~time curves; however, there is no simple relationship between
the velocities and pressures.

The peak values of the radial accelerations tend to decay more rapidly
at greater distances, with inverse powers approaching 1.80 of the radial
distance at the surface and 1,50 along the vertical axis,

Rise times of the radial pressure pulse decays with increasing radial

distance; however, no evaluation of this decay has yet been made in this

study,

F. SPECIAL CASES

1. Non-Homogeneity and Stratifications

Certain probleins involving solid spaces with a number of layers, each possessing

different elastic constants can be treated with the technique of digital simulation

used in the present study with slight modifications of the present computer pro-~

gram, The layering,however, must be restricted by the following geometric consi-

derations:
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(1), Por spherically symmetric problems (involving infinite spaces, for example)
the layering must maintain the condition of spherical symmetrys +this
means that the different layers must be spherically concentric,

(2), For axially-symmetric problems (involving half-spaces), the layering
can be of two configurations:

() If the loads are applied on & semi-spherical cavity, the layers
must also be concentric semi-spheres of given radial thicknesses.
(b) If the loads are applied on the horizontal surface, the layers can
be horizontal or spherical,
In addition, the analysis must be bgaed on the assumption that there are not relative

motions at the interface of any two adjacent layers.

2, Spherical Problems in Bilinear Solids

At present the literature conteins a number of solutions to the~problems of plane
wave propagation in bilinear media (e.g., Rakhmatulin, K. A., "On the Propagation
of Plane Waves in an Elastic Medium with a Nonlinear Stress-Strain Law", Uchenye
Zapiski, University of Moscow, Vypusk 152, 1951, pp. 47-55; Akaiak, R,, and
Weidlinger, P,, "Attenuation of Stress Waves in Bilinear Materials", Journal of
Engineering Mechanics Division, ASCE V. 87, No. EM3, June 19613 Sutcliffe, S,,
"Strong Shock Formation in Bilinear Media", to be published in the forthcoming

issue of EMD, ASCE).

The study of the same problems in the radially symmetric system is not nearly
as complete but can be carried out by similar analyses (e.g., Rakhmetulin, K, A.,
and Demianov, Yu, A., "Prochnost' pri intensiwvnykh nagrvekakh", Fismatgis, Moscow
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1961). The added complexity of the nonlinearity of the differential equations in the
radislly symmetric case makes the subject somewhat more difficult, and generally

makes approximate analytical techniques necessary.

The differential equation of motion for dilatational waves in a radially symmetric

system with linear stress-strain relation is given by

32 -_ _Laz
¥ 2 342

vhere u is the diaplacement in the r -~ direction, r and + are space and time coordin-

t:

=0 (20)

ates, and ¢ = —Z\T'*@ is the acoustic velocity.

The characteristics of Equation (20) are

rtet =R (21a)

l+

dg |
c

HIN

(p —%) dr = 0 (21b)

The principal difficulty encountered in the analysis by characteristics lies in
the fact that Equation (21b) is not integrable in & simple form unless the potential
@, vithu = —g-g—, is introduced, Thus, as will be done in this treatment, it is

sometimes more convenient to use the general solution to Equation (20) and & poly-

nomial representation.

Let the stress—strain relation for a radially symmetric system be given as in F.igure
157a where loading takes place along the line with slope ¢' and unloading elong

the line with slope ¢. Let the radial stress at r = T, be given by a function of tle
type shown in Figure 157b, In the (r,t) plane, the solution can be represented as

-36-
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shown in Figure 157¢. Up to r = r¥, a strong shock is propagated along the line
r -c¢'t = 0, and unloading takes place in region I. At r = r¥*, the discontinuity

vanishes, and the elastic loadixig region. IT forms, with unloading still in region I,

Let us consider only that portion of the (r,t) plane for r  r*, and make a series

representation of the solution in that domain,

Introducing the potential @, with u = %g into Equation (20) yields the general

solution in the unloading region

1 1
¢=rf(r-ct)+rg(r+ct)
1 1
u=;(f'+g')-——2-(f+g)
¥ (22)
—g—:=%(f” x g") -%(f' +g") +2—3(f+g)
r b
bu Cc " (1] [+] 1 ]
== (& -g')=5( -g)
Tt T r2
Along the shock front r - ¢'t = O, impulse-momentum yields
¢’ Aur+Aut=0 (23a)

vhere A u and Aut are the discontinuities in strain and particle velocity. Or,
since u_and u, are Zero below r - ¢'t = 0,Equation (23a) may be written

e'ur +u, = 0 (23b)

On the t-axis let o =0 (ro, t) be given as a function of the type shown in

Figure 157b, Then letting f(ro -ct) = £ end g(ro -ct) = g, Ve have

7l+ ! 4
olrys t) = —r;—@ (8 + 8 -5 (2 v ) + B3 (2,4 0)  (24)
[} o
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On the shock front r - ¢'t = O Equation (23b) yields

c'[%(f'+g")-—(f +g)+-—(£+g)J

T
(3 - - - 6] - (25)
and, since u = 0
-::(f'+g')--r13(f+g)=0 (26)

Equation (25) becomes:

(—te +°)f [ (1--—] (&=L )g"[r(l+-—)} :2 f'[r(l—-g-i-]

+'r38'.[r(1 +g—1)] =0 (27)

Furthermore, at T 0, u=0 and o, is discontinuous, thus

%f.(,)__f(,)+_g<,)- glr,) =0 (28)
o r o

)
Equations (24), (27), and (28) are sufficient for the solution in region I for

r < r*,

Let o(ro, t), £ and g be represented by the polynomials as follows:
23 n

2 .
G(ro, t)=p°+p1‘b+p2t +P3t + ——— ¥

t(r -ct) = 2() =t +2€ +2E + —— g E"

(29)
glr, +ot) =g (1) =g, rah +gh s gh"
f[r(l - —1-)] -flar) = fo + fla r + f2a2 r2 o+ —— fnan r
C
g [r(l + -:'T)] = g(pr) = g, + gfr + 82321'2 + znﬂnrn

=38~
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Substitution in Equation (27) and equating like powers of r yields:

Equation (28) yields

1 2 3
ro[fl v2tx + 3w S+ Aty

4
3o + 5257 " ]

1 2 3 4
-5 [fo ver +tx et ety teer

o

+

HIH

2 3 4
[ g + 2g2ro + 3g3ro + 4g4ro + Sgsro J
o

1 2 3 4 5
g [30 POt aE T gy v e, | =0
0

Equation (24) yields

_ A+ am 2 3
P - = [2f2 +6tyr + 128,r % 4 20857 0 4 ]
u_ [ 2 3
% £+ 28,r 4+ 38,7 % + a4t + ]
[+]
L [ 2 3
+ . 3 fo + flro + f2r° + f3r° + ]

(4]

A+ 2 2 3.,
+ T 232 + 6g3ro + 1234r° + 2034ro + J
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T 2 3
. ) [81 + 232ro + 3331'0 + 4g4r° +
o

4 2 3
+ g By * BT, BT BT+
°

1 2
Pl = T (2 + 2}1) [- 6cf3 - 24cr°f4 - 60<=ro fs - -——-]

AT - - 2 _
*; [ 2¢t, - 6or 2, - l2or °2, ]
\ g
B l_ e - - 3er %2 -
+ - 3 [ cfl 2crof2 3cr° f5 ]
(o]
1 2
3 (A + 2p) [5ch + 240r g, + 60cr g, + ]
. 2
> [2°32 + 6¢ng3 + 120r° 8y + }
rO
4 2
+ - ) [cg1 + 2¢:rog2 + 3cro gy + ]
[+
1 2 2
Pei (A+ 20) [ 122, - 60t.0%r + ]
4 2 _ 2_ 2
% [3ch 12,0% 2 + ]
[+]
[, 2 ., .2 2
- % [fzc 3,e°r ® + ]
(4]
+ = 2 2 2
r, (A+ 2p) [12g4c + 60gse’r © + ]
4 2 2 2
- -}’—2[333(: +12g,cr “ + ]

r
(4]

(32) con't,

— —

f . .
nvmm— ey Soamr—



pr—

N ey

P, = -rl-; (A +2p) [-20!503] - f‘—z [-f4e3] - 322- [-f3c3]
(] [+]
+:_—° (A + 2}1) (203503) - -?-:5[3405] + ::Lz [+..'3°3]

Equations (30) through (32), when solved simultaneously,will yield approximate values
of £ and g for the first five terms,which will probably suffice for at least a rough

solution.

The solution cen be extended beyond r* by noting that in II oy u=o0 and r=¢'t = o,
o0,
o, is continuous across the unloading wave separating I and II, and —= - 0 on the

at
unloading wave,

It may be noted here, that the problem could be solved by characteristics, but since
the boundary conditions are set on two lines; t =0, r - ¢'t = 0, it would be
necessary to set up a finite grid in the (r, t) plane, which would necessitate the
solution of an increasingly larger system of simultaneous equations for each suc-

cessive time step.

G. RECOMMENDATIONS FOR FURTHER STUDIES

The present study serves to indicate that solutions of & number of difficult
problems invulving ground shocks are possible with the technique of digital simu-
lation employing the discrete models which were used in performing the numerical
solution of the present problems. These models were developed with conaideration
for handling problems of continuum dynamics involving plastic yielding and irrever-
sible flow, as well as viscous effects. However, the computer programs currently

41~
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available are restricted to linearly elestic solids, although the inolusion of vis-

cosity for solving problems of Voigt solids does not involve major difficulty. The

handling of nonlinear characteristics will require further research,

Further studies that can be performed with only minor or no modifications of pre-

sent computer programs are the following:

1.

2,

3.

4.,

5.

More extensive determination of the stresses and ground motions, inecluding
shear stresses, circumferential stresses, principal stresses, and direc-
tions of principal planes, and tangential accelerations, velocities, and
displacements for elastic half-space solids.

Determination of the effects of an expanding air blast on the horizontal
surface, or the determination of the combined effects of the direct in-
duced wave and the air blast wave.

Effects of elastic layering., The layering must be restricted to those
discussed earlier.

Effects of linear viscosity.

Numerical solution of -sphericel blast problems in solids with similar

behavior.
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DIRECTLY-TRANSMITTED GROUND PHENOMENA
ELASTO-«PLASTIC ANALYSIS

A: INTRODUCT ION

This study was originated in order to derive motion and stress values for directly-
transmitted ground shock in the nesr-crater region, or so-called plastic sone,

vhere neither hydrodynamic nor elastic theories is specifically applicable to

obtain useful estimates of these waluea. The region of interest extends about

the crater, from the ground surface to the vertical axis below, Very close-in,
within the crater, shearing stresses are negligible in comparison with the extremely
high pressures. Somevhat farther out, in the so-called plastic zone, shearing
stresses become important, Still farther out, strains become small enough for

elastic or visco-elastic theory to be used,

0f greater importance than determining the distribution of stress and motion through-
out the plastic sone are the computations of stress and energy attenumtion as a re-
sult of wave propagation through the plastic zone. This informetion is required
because its availability, as inputs for the elastic models, immediately gives

greater realism to the estimate of motions and stresses in the elastic =zone.

In order to satisfy these requirements for energy attenuation and motion solutioms,
it is, of course, essential to formulate the problem as an elasto-plastic, two-
dimensional model, The problem is a taxing technical operation involving the
solution of non-linear, two-dimensional, partial differential equations and re-
quiring the use of complex and advanced computetional techniques,

=103~

s e g

2



-

A first step toward these objectives has been made in this study, A formulation
of the physical model has been expressed in terms which permit a tractable
computational procedure. This procedure has been tested and debugged after the
usual amount of false starts end try-outs. At this stage only a pilot problem
has been completed albeit with a smaller number of degrees—of-freedom than the
formulation is capable of, The results demons rate the adequacy of the compu~
tetional approach and coding deteils in handling a realistic physicel situation.
They also indicate a very rapid attenuation with distance of both energy and stress.
Modification of the computational procedure has been studied and planned to the
end of handling a larger number of degrees-of-freedom and of speeding the routine,
This is needed in order to obtain better details in the stress and deformation

pattern,

In addition, the simplified method used in the pilot problem prewents the com-
putation of the residusl strains which determine the precise boundary between the
plastic and the elastic zones, Modifications of the procedure again is necessary

10 get a measure of these strains,

The study bas been performed by Dr, J, A, Brooks, who has been assisted by W, L,
Frank, Director, Systems Analysis, Informatics, Inc,, in the computational aspects

of the work.
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B. STATEMENT OF PROBLEM
The specific objective of this study is to compute the response to directly-trans-
nitted ground shoock of an ohsto-piutic, semi-intinite hs'lt-lpuo subjected to

surface explozion of a multi-megaton weapon, Close to fho bﬁrnt, pressures in the

medium are extremely high and the shearing stresses which the medium can sustain

are insignificant compared with the normal stresses and can be neglected. Somevhat
farther out, shearing stresses become important and the full stress tensor must be
considered, The materiasl is strained well beyond its elastic limit and elastic theory -
can be used only as a firat approximation. Still farther out, elastic theory or

visco-elastic theory is guite appropriate.

The region of interest, as shown in the following sketch, is bounded by an inner
hemispherical surface of radius Ty the ground surface @ = n/z,a.nd the outer

spherical surface, Tqe

IRENRRERE! teditees

Undisturbed
Region

Disturbpd Region

i s

r, = rl(to) + (t - to)v

1
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The outer redius, T sdvances wvith time at o velooity, v, such that it separates
the disturbed and undisturbed regions.

Solution objectives are to define the extent of the plastic sone to determine the

sttenuation of energy through the plastic ®one, and to describe stresses, strains,

displacements and velocities within the plastic zone.
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C. PORMULATION

The problem is non-linear and two dimensional and therefore requires numerical treat-
ment, The equations are given in terms of generaliszed coordinates rather than finite
difference approximations to field equations in order to avoid speed limitations im-
posed by space-time mesh ratio requirements necessary for convergence, The relative
speed of the two methods is not kmown and mesh ratio requirements were not determined.
It waz felt that the finite difference approach had a higher chance of complete fail-
ure by virtue of speed and, therefore, should not be the first approach to be attempted.
By virtue of the generalised coordinate approsch, shock discontinuities are smoothed
over, Also, the degree of approximation to the exact solution for the field equa-—
tions depends upon the number of generalised coordinates and the choice of basis

functions.

Basis functions X and Y , as given by Equations (H-5) and (H-6),* are defined over the
region ros rs rl(t), 0% 0 £7/2 and 0K g <27, vhere r, © and @ are polar spherical
coordinates, The radius is r; © is the polar angle and § is the meridian angle., The
basis functions are independent of @ and, consequently, the equations are restricted
to the axially symmetric case., The inner radius, Ty is fixed (i,e., r,=6a constant
for any given problem), The outer radius, rl(t), moves outward with a constant velo-
city, v. Displacements are expressed as linear combinations of the basis functions

as given by
L( = fn (?f)X )
r Z h

#Letter H, where it appears in equation numbers, denotes Appendix H,

- 107 -
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U, =Z, #n ()Y, o

vhere coefficients, 9 become the generalized coordinates,

Substitution of Equations (1) and (2) into the familiar expression for kinetic

T= éfj fp( 4’ + df)r’/u'nﬁ Ar A8 d¢ (3)
FeP ‘

T-‘- WZ Z (A»m 7.». ih + Bnhf"” fn * 'f;mﬁ;f») (4)

vhere Am, an’ and Fm are time dependent coefficients and P is the mass density

energy,

yi;ldl :

of the medium. Coefficients Am are given by:
i-%
Amn = ﬂ COWX, t Vo Vo) Yaim8 dr 46 (5)
5 0

By introducing the variable, g s given by:

3'= ]l'b

and by requiring that xn and 'In be functions of © and I” only, coefficients Am take

on the form given by:
W‘L /

Amn = n‘(r.-n)ff()(xmx,, +Y, Vo) 28 A6 JS
o 0

",
+2}3(}7-b)‘7'f€()(mxh +YmYn)rA"'\B s Ay
o0

: (M
+(n- n):‘ﬁﬁ(xmxn t Ym %) S 0n 6 dBAS
0
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The integrals in Equation (7) are independent of time and can be evaluated once for
each problem, Similar formulas for B and P are given by Equations (H=19) and
(H-20) of the Appendix,

Lo e 1 R

Displacements are partitioned into elastic and yielded components with primes denoting

elastic components and double-primes denoting yielded components, The total dis-
placement, or wnprimed quantity, by definition of notdtion equals the sum of the
primed and double-primed displacements, The umprimed, primed and double-primed

notation is also extended to generalized coordinates and strains,

Stresses are functions of elastic strains given by the usual elastic relations be-
tween stress and strain, Consequently, the elastic strain energy of the medium is

a quadratic function of the elastic components of the generalized coordinates as

given by: ;.
V= szomhf'”fh (8)
m h

Coefficients D are finctions of time given by Equations (H-27) through (H~30) of

the Appendix,

The potential of the external forces is given by:
M W
u/--ffa,(a,a) A om0 Ap 46
o0

2 4
—ﬁﬂ, (3, g)f-(?f) ron g dé 4 (9)
o @
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vhere P(t) and p(t) are pressures on the spherical surface, r = T,y sod on the growmd
surface respectively, The pressure functions, P(t) and p(t) are simplified to
functions of + alone by virtue of the specific problems to be worked, Hydrodynamic
couputations* indicate that at certain suitable values of initial time, to, most of
the energy transmission across a suitably chosen inner radius, T, wvill have already
occurred and practically no energy transmission will have occurred across a spherical
surface of radius tvice that of r,. At the same time, pressures p(r , t) and

P(6, t) will have decreased to more than an order of magnitude less than those mid-
wvay between T, and 2r°. The air wave front will have traveled ahead of the radius,
Ty and the pressure distribution over the ground surface from r, to T, wvill be
lpprrdximtoly constant at any given time. The pressure over the inner surface will
have dropped to the same order of mgnitude as the ground surface pressure snd, by

virtue of its insignificance, cen be assumed to be uniformly distributed.

By meking suiteble substitutions of expressions already developed, Equation (9)

becomes :
w= am Hm 2 (10)
/2
vhers H = PE)R f Xom (0,6) w6 db
(/]

/
- ) n(h-n)f W (5,8 dS

!
- ﬁ(‘f)(h'b)zfym (3,2)5 ds (11)

*Brode, H, L, and Bjork, R. L., "Cratering from a Megaton Surface Burst", RM-2600,
1960, The RAND Corporation,
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From the familiar form of the Lagrangian equations of motion, or from the equivalent
Hamilton's principle, the equations of motion are found to be:

ZA..,,, ;,, }f;,,,g,, +>;Cm;,. + 0, ;,, Hi (12)

m=i2....
vhere coefficients A ! B ! cnm and Dm are given in Appendix H, Except in the

elastic case, in vhich q' n =% 80 auxiliary set of yield equations must be developed

for determination of the q”n.

Suppose we apply Coulomb's equation, vhich is gi.von by Equation (13), and determine

" n

values of yield strains¥, 6:r’ 6“, 5¢¢, and 6 0’ such that, for given relatiomns,

the following expression is satisfied:

|Z|¢ c-cHnd (13) -

vhere 7 is the shearing stress, c¢ is cohesion, o is the normal stress and ¢ is the

II

angle of internal friction. Let us denote the values of 61_ 5 oo and 5

vhich have been determined from application of Equation (13) by fl’ fz, 13 and £ 4

respectively, Then let us seek values of q// sn=1, 2 ,,,, such that yield strains

computed from the q approximate the values given by fl’ £ 29 2, and f By substi-

3
tution of yield displacements determined from formulas such as Equations (1) and (2)

into formulas for streain we obtain:

" "
5" =Z }h ‘S‘jx.“ (14)
n

*The strain notation is fairly obvious, Only the expression for 5 might cause
some confusion; it is

Pi=£<'a_"_aa +'L'3&
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6;9 Zi}f{?—"}{é" +X»} ' (15)
6;*=,. # B atorn (16)

Ero=3) o -4 +4 45 an

Then, if we require the folloving equation to be satiafied for arbitrary variations

of stress, &¢ 2 lnd 61:

zwff{( ~£)66 + (Cho-£)5G + (&) -5,)50
+2,-R)ST,frao dde =0,

we obtain the following set of simultaneous equations for determination of the q”n

Z Dun fn =G 3 (29)
4 ‘

where G is found from:

o bt

+24 (5‘,)(%{-"‘) 2/ (ﬁ)(%)('%” +Xn) (20)
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# 24 (5)(F) (o S8 + Xo)

+ ) (§L- Lk S s b A

(20 con't.)

The Dm coefficients in Equation (19) are the same as the D“m coefficients in the

equations of motion. Hence the equations of motion become:
h

In the "simplified theory", for vhich Equations (21) are the equations of motion,
stresses depend only on the instantaneous total strains and not on the past atrain
history. The more complete theory iz contained in Appendix H, In place of Equa-

tion (19), the more complete equation, copied fr;)m Equation (H-57), is as follows:

ZQ” 8- ;h"(t-at); Z E, fi (E-08) #6,,

(22)

Equation (22) has been coded into the existing mechine program, but temporary

inaccuracies in the Ellln matrix render the more complete code inoperative.
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It remains to provide formulas for computation of fl, fz, 13 and 14. In doing so

ve proceed to sketch the detail contained in the Appendix quite sparsely. Combining

the equation of Mohr's cirele with Equation (13), we obtain:

_;_5‘253 L caeg - (T ;5),064‘ (23)
8 & coud - (HR)ond (24)
L g canp -(51B) 4 (25)

vhere Sl, 82 and S3

Equations (23) through (25) are, in reality, only more explicit forms of Coulomb's

equation,

Ve now compute the principal strains which for the simplified theory are given by:

€ =% (6 +64)- 4/ F(6,-8&)+ 65 (26)

(- 5¢¢ (28)

For the more complete theory, principsl streins are given by Equations (H-77)

through (H-T9).
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Next, let :
€= & ( €.4 +€;) +E (E55) - g (5E) (29)
€= S(S0918) - 5(S5%) (%)
€ 5(S)-5 (9 5(45%)  w

vhere coefficients g 0’ §1 s g;, and § 3 are to be determined such that Equations

(26) through (28) are satisfied. It is found that if

Cantd 2 (A+5u)(€ +6,+E5)n d (32)
then
ga =0 (33)
1 Equation (32) is not true, then
f' = /— cald (34)
(1+84)(6 1€, 7€)

Having &, it &€ €,& €, and it

H(5E) & canp st flereig]2-(1£4)E]

r2p( L39S

(3%)

then

§ =8 =80, (36)
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Otherwise, if

§;— (éf-—;-é‘) 20 (37)

and if

ZUEy -z,«(‘—*;—f'-)s Cad ~sag ﬁéﬁéﬁf_ﬂ[}\

-(2+§,«)§] +Z/4[§5215_'])Z (38)

then

£ conosn 6 et es]-(win)E e[ 2)§
| 2u(<5>)

and § 2= E 3= 0. The complete set of possibilities includes 8 other cases which

(39)

" " y
are given in the Appendix, Having obtained él’ 52, and 53, a transformation
inverse to Equations (26), (27) and (28) gives 2)s 2, £, and £, for use in numeri-

cal evaluation of Gm, m= 1, 2 vevees

The machine program was originally coded from working reports whose contents are

essentially the same as given in Appendix H of this report, except for differences in

notation and grouping of terms, Coding, formula evolution, and reporting never
reached exact coincidence., The code was gradually "de-~bugged" and modified in

order to eliminate trouble vhich manifests itself as a violation of the principle
of conservation of energy. In addition to correction of coding errors, two modi-

fications had & prounouced effect on the computations,
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The first modification concerned the simultaneous integration of the equations of
motion, given by Equation (12), and the stepwise advancement of the yield components
of the generslised coordinates by use of Fjustion (22). The program uses s Runge-
Kutte integretion routine which requires computation of derivatives at times ¢,

+ +h/2, t +h/2 and t + h for integration over the interval from ¢t to t + h.
Associated with successive derivative computations within an integration cycle, the
values of At in Equation (22) were originally taken to be O, h/2, 0, and h/2,
corresponding to time intervals from ¢ to t, t to t + h/2, t + h/2 to + + h/2 and

t+ +h/2 to t + h, The original seguence of At values in Equation (22) was changed
t0 0, h/2, h/2 and h, corresponding to time intervals from t to t, t+ to t + h/2,

t+ tot+h/2and t to vt + h. This change produced physically plausible results for
short test runs but energy growth trouble returned when attempts were made to inte-~

graste over durations of time suitable for practical problems,

The second modification was made vhen it was learned that inaccuracies in matrix
elements, Em’ were causing the difficulty. The change consists of replacing
Equation (22) by Equation (19) and replacing Equations (H~77) through (H=79) by
Equations (26) through (28). Errors in the E_ elements are on the order of

(M;)2 by virtue of its derivation, This leads to errors in the time-wise advance-
ment of Equation (22) vhich are not acceptable. This inadequacy can be corrected
in the derivation and incorporated into the code, but lack of time prevented doing

80 in this study.
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D. PILOT PROBLEM

A pilot problem has been run vhich demonstrates the adequacy of the method and

correctness of the coded procedure,

Number of degrees of freedom

Lamé's constants

Density

Cohesion

Dilatational wave velocity
Air pressure parameters for
Inner radius

Initial outer radius
Beginning of computation
Initial strain energy

Initial kinetic energy

The problem perameters are as follows:

N=4
A = 301 ksi
p = 451 kei

P = 3.3 slugs/ft>
¢ = 100 psi

7250 ft/sec

2 MT burst

r, = 250 £t
rl(to) = 300 £t
22 milliseconds
sero

3.07 x 10'% £t - 1bs

Initial conditions were chosen to give a velocity distribution which, qualitatively,

had the appearance of the velocity distributions shown in RAND report number RM-2600

by Brode and Bjork.

initial kinetic energy was 100 KT (INT equivalent).

The magnitudes of the velocities were chosen such that the

The initial strain energy was

taken to be zero since code checks had shown a rapid re-apportionment of energy

irrespective of the initial assumptions,

The initial conditions are as follows:

i,

.

;-—J




)
ot

[ee—

ps— |

fi (Z:):fz {t,) = ﬁ(t-) = (L‘,) =0
§ (&)= 703 $t/se.
£ ()= 703 §t/sec.
Fs(t) = 193 $t/sec. |

74 (%)

N

|406 1 /sec.

This choice gives & peak initial horisontal velocity at the ground surface of about
2.6 feet per millisecond and a peak initisl vertical velocity (not at the same point)
at the ground surface of about 1.2 feet per millisecond upward. Directly below the

burst, the peak velocity is about 3.5 feet per millisecond at the beginning of

computations,

Results obtained from the computer are tabulated at regularly-spaced intervals in
time, angle O, and coordimteg 3 they are then plotted against radius for fixed
values of time and angle O, From these plots, quantities can be re-plotted.as

functions of time or angle O,

Figure 158 shows radial stress versus time for various radii along a line which
makes an angle of 72 degrees with the vertical axis, Figure 159 shows radial

stress versus time for points along the vertical axis, Inversion of stress mag-
nitudes from what one would expect is due to too large a value of ‘ia(*'o) in the
initial conditions, The initial velocity distribution for the pilot yun simply does

not match the intended initial distribution and, as a result, the region below the
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orater is rapidly put into tension. The limiting velue of tension, which is ¢ cot @,
shows up as sero on the scale of Figures 158 and 159, Of course, more appropriste
initisl conditions can be used.

Results shown in Figure 158 and 159 were so disturbing that hand computations were
performed to spot check the machine computation of yield strains. An error wes
found but it could not possibly have influenced the results appreciably, The error
hed the effect of limiting the tensile stresses to approximately 600 psi instead of
172 psi, as had been intended, Figure 160, which shows time histories of tangential
stress for O = 72 degrees, is given for comparison with Figure 158, Although the
time scales usedl in Figures 158 and 160 are different, it can be seen thet the
general curve shapes for both radial and tangeniial stresses are quite similar,

As shown by these figures, tangential stresses apparently begin to attenuate more
rapidly than radial stresses beyond a distance of 1,000 feet. No explanation of

this phenomsnon has been found as yet.

Radial displacements along the vertical axis (B = O degrees) are shown in Figure 161;
radial displacements for & = 72 degrees are shown in Figure 162, These results are
not a good representation of the tiue physical behavior. This occurrence in the
computed results can be explained on the basis of a deficiency in the choice of
basis functions. Of the basis functions currently contained in the computer pro-
gram, none has & radial strain component different from gzero at r =r o° This
deficiency can be corrected relatively easily and such & correction is an obvious

necessity before further computations are made,
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Figure 163 shows tangential displacements along @ = 72 degrees for various radii,
The curves extend to 225 milliseconds. Computations were performed out to 490
milliseconds and the tangential displacements peak at approximately 280 milliseconds.
The fact that tangential displacements are large is just another result of the
initial velocity pattern which was chosen. Another factor contributing to the large
displacements shown in Figures 161, 162 and 163 is the inability of the "simplified:
theory" to leave behind residual displacements.,

The computer results are heartening in that they indicate the readiness of a usable
camputer code and in that they indicate a high attenuation of stress, However, any
conclusion to be drawvn from them must, of course, take into account the preliminary
nature of the results, These results are intended only as an indication of the pos-
sibilities of approaching an extremely difficult and complex problem in a greatly
simplified menner, That certein physical conditions have been violated is not at
all swrprising, Correcting such discrepancies is part of the usual effort in

evolving such techniques.
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E. CONCLUSIONS AND RECOMMENDATIONS

The following comments summerise the Brocks study of the propl.pﬁon in so0il of an
axially symmetric wave gonontod.by & nuclear detonation at the ground surface,
The general objeetivé‘ of this mlysia is to provide motion and stress values for
the directly-transmitted ground shock in the near crater region where plastic dis-
turbances are likely to occur, These comments define the extent of the results
obtained thus far and outline the work necessary to carry further the already-
developed analytioal techniques to the level and range of conditions required for

confident engineering design,

The model is that of an elasto-plastic medium bounded by the ground surface plane
and two concentric spherical surfaces of radii, T, and T, The inner surface des—
cribes approximstely the boundary between the’ hydrodynamic and the plastic regimes,
The outer surface describes the boundary beyond which the medium is undisturbed at
any given time. The model is specifically developed to treat the plastic two-
dimensional behavior of the ground at the crater periphery. The hydrodynamic
inputs are derived from the Brode-Bjork data which were graphically reduced to a
more suitable and simple form. For the conditions computed by Brode and Bjork, the

radius of the interior sphere is approximately 70 meters or less,

The model is designed to provide displacements, stresses, strains, and, in particular,

partitioning of strains into elastic and plastic components. These values are ob=
tainable for any selected net point in time and space for any ground medium des--
cribed perametrically by the angle of friction @, cohesion ¢, and Lamé constants

A and po The net points are defined at regular time intervals At at regular
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spatial intervals in spherical coordinates @ and r, vhere O is the angle between
rl the vertical axis and radius r going through the burst point.

RO

A computing code is available, The basic formulstion uses & generalized coordinate
approach reather than a finite difference approach., It incorporates certain simpli-

- fications. For instance, shock discontinuities in the region between the hemis-

y pherical boundaries have been ignored and smoothed over by means of a series ex-
] pansion which is the ssme over the whole region., This simplification does not in-
§ S validate the two-dimensional aspect of the model,

i In & similar fashion, the air blast pressure over the ground surface at any given

( time is assumed not to extend beyond the radius of the outer boumdary. This simpli-
fied assumption does not allow the simultaneous treatment of air-induced and
, directly~transmitted ground shock but the soil confinement from the air load is
properly simulated., The code was developed for the IBM 1604 computer., It can
g compute the components of stress, elastic and plastic strain, and displacements
; 5 at net points within the region, At present, the code also incorporates a simplified
yield condition in which the siresses depend solely on total strains and Coulomb's
equation, Only one pilot problem has been solved using relatively simple soil
perameters and weapon inputs, Resulting soil stresses and motions have been com~
puted for only a few space points and time intervals, Because the small number of
generalized coordinates used in this pilot problem restricts the detail of the
solution, the results do not provide final design data., They do, however, demon-

strate the adequacy of the computational approach.
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The analysis and computer program doytlopod in this study are now ready for solu-
tion of physically significant surface burst problems, At present, the numerical
procedure employs stress computation routines vhich do not depend on the past
strain history but only on current strains. Thus the present code does not in-
clude the ability to handle residual strains and displacements, but there is no

indication that this feature cannot be added.

Preliminary results from the pilot problem used to check the programming indicates
that directly transmitted ground shock from & 2 MT burst will be insignificant in

a structural design sense beyond a radius of about 2,000 feet.

Further effort toward meking the Brooks solution more useful in the definition of
underground effects logically divides itself into two sequential phases, the first
being concerned with improving the code and the second consisting of parametric

solutions.

Improvement of the code has two concurrent objectives, The first is to improve the
available code by incorporating a more sophisticated yield condition in which
stresses depend upon the past strain history. The second is to enhance the speed
of computing operations and thus substantielly diminish the burden and cost of the

perametric studies of so0il response in the plastic region.

The present difference equation form of the yield equations has been found less
accurate than the companion differential equation form of the equations of motion.
This difference equation can be replaced by a hybrid differential difference for-

mulation which will correct the difficulties inherent in s generalized coordinate
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approsch. The generalized coordinate system wvas adopted early in the analysis of
the model in order to provide the simplification necessary for solution,

The lack of speed in the computational procedure has been found to be due primarily
to recomputation of quantities which could be stored in the computer memory. There~
fore, the code should be modified in order to optimize date transfer and use of

tape units,

Parametric stulies are needed both to indicate the sensitivity of computed results
to changes in s0il parameters and to provide free~field design inputa for the

snalysis of structures in the plastic zone. As a basic program to be followed it
is suggested that three typical earth materials be chosen for study: a hard rock,

s solt clay or other plastic soil, and a soil of characteristics between those of

rock and soft clay,

Each of these media can be described by a set of parametric values, (i.e., A ’ Py
g, and c). Computed results of stresses, strains, displacements and velocities
should be obtained for each set of parametric values rather than for independent
varieation of soil parameters. The bomb inputs to such wnalyses are those found
in the Brode-Bjork computations of RM~2600 (and subsequent amended and unpublished
date using & finer mesh)as well as any later computations by AFSWC, These date
provide both initial energy and pressure~versus-time functions, each of which ia
sufficient for total excitation of the plastic regions, The response of one of
the three medis to each of these functions should be computed and compared in

order to ascertain their compatibility with the general model as well as with the
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set of parametric values describing the medis,

Thus & first extension of the Brooks study involves a minimum of four sets of ocom-
putations, It must be understood that the use in the computations of the RAND data
sutomatically involves certain uncertainties and limitations. The influence of the
plastic zone behavior on the pressures in the hydrodynamic zone is ignored, This
influence, however, has been shown by Newmark to be small and the results of a
parametric study will enhance considerably our quantititive understanding of the
physical phenomens. Such a study should be primarily aimed toward distinguishing
between the environment created by the vave propagetion at the surface on one hand
and at depths belov the crater on the other. The Brooks model, in fact, is not
designed to measure small localised variations at minute depth differences;
consequently, the rays, (along which information is reported as s function of dis-
tance and time) should be limited to s smell number., The number of reys and points
on each ray will be determined by the requirement for graphical presentation of

the results,
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CHAPTER VI

COMBINED EFFECTS

By combined effects is meant primarily the couwbination of air-induced and directly-
transmitted ground effects. Another combined effect, that of the Rayleigh wave,

is a result of complex interactions of the dilatational and shear waves and is

all air-induced. It has been discussed in Chapter II (Vol. I). Before discussing
means of combining air-induced and directly-transmitted effects, it is helpful to

summarize briefly the state of the art of determining directly-transmitted effects.

A. /STATE OF THE ART -- DIRECTLY~-TRANSMITTED EFFECTS

1. Hydrodynamic Analysis

The hydrodynemic cratering analysis of Brode and Bjork has been used as input to
both of the analyses of directly-transmitted ground effects; therefore, any un-
certainties or approximations in the hydrodynamic analysis will affect the results
farther out. Several approximations were made as well as certain assumptions.

One of the approximations is the equation of state of the only material considered,
Nevada tuff; the approximation is satisfactory for this material but not neces-
sarily for other ground materials. However, one of the results of Newmark's
analysis is an indication that the computations are not sensitive to variations

in the equation of stute. JFurther effort is required to establish this important

conclusion.

Details of the weapon decomposition and other early-time phenomena have been based
on assumptions which are based on highly-classified wespon detail information;

hence, calling the detonation a 2 MT burst is open to question. Knowledge of the
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basis of these assumptions is of little value since the attacker's weapons will

remain an unknown quantity. Thus, a major input will always be uncertain, a fact
vhich simply must be accepted. Location of the explosion is also limited at pres-
ent to the ground surface since the RAND computations were made only for a surface
burst. Depth effects should be considered in any further computations undertaken.

The Eulerian approach to the hydrodynamic problem carries with it certain aiffi-
culties and has resulted in soms smearing of the shock front. This is not a
critical difficulty nor does it bring about possidle large errors.

In sumary it can be stated that the hydrodynamic analysis of Brode and Bjork is
highly satisfactory as a means of determining energy partitioning between air and
ground-shock. Computations based on this analysis have proven to be adequate

as inputs tc analyses of the plastic and elastic regions beyond the crater. The
chief shortcoming of the computations lies in the limited extent of the results.
More materials need to be studied as wsll as detonstions at various depths. Until
such results are obtained it is necessary to limit the conclusions which can be
drawvn from the plastic and elastic anmalyses of Brooks and Newmark.

2. Elastic Analysis (Newmark)* .
Newvmark's analysis tekes as inputs the hydrodynamic results at a radius of ebout 650

feet. These are applied directly to an elastic half-space without any consideration
of plastic-zone effects, including attenuation of peak stress and change of pulse
shape. Neglect of the plastic zone was dictated by available means of obtaining approx-

imations of response. The basic model used by Newmark is a mass-sprung approximstion

#See Chapter 4, Vol. II
' e 13 -
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incorporating radial and tangential degrees of freedom. To this model were
applied pressure-time inputs based on the hydrodynamic results. An important
result of one part of the Newmark study is that the variation of material prop-
erties from one side of the hydrodynamic boundary to the other (i.e., from
hydrodynamic to elastic in Newmark's analysis) does not cause serious reflec-
tions or other difficulties in matching hydrodynamic outputs to elastic inputs.
Because Brode's results were for tuff, Nevmark's results were limited to a

similar material.

Results of these computations are extremely interesting but, as is to be ex-
pected with first results of complicated analyses, raise several questions that
must be answered before practical use can be made of the results. First, the
results show large tensile tangential stresses far beyond the ability of ground
materials to resist. Furthermore, results are obtained only for fairly larée
depths at moderate distances from the burst because the ray nearest the surface
emanates from the burst at a 15 degree angle from the horizontal. Also signifi-
cant for shallow-depth effects is the neglecting of air blast loading en the

surface.

In addition to closing the gaps in the results as listed above, results from the
Nevmark analysis should be extended to layered media and viscoelastic media.
The analysis is capable of handling these more complex problems with only mod-

erate changes and additions.
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3. Rasto-Plastic Analysis (Brooks)*

The Brooks plastice-region analysis was undertaken precisely to close the gap
between the hydrodynamic and elastic regions. Newmark's results extend the
elastic region to over 100,000 psi, which is far above the elastic stress-
carrying ability of earth materials. The main results which were sought ffom
the plastic analysis are the limits of the plastic zone and the amount of at- .

tenuation of energy and stress within this zone.

This analysis employs generalized coordinates and numerical approximations and
includes a means of detecting the cessation of inelastic behavior. Further, it
eliminates one of the problems encountered in Newmark's results, that of high
tensile stresses, by limiting tensile stresses to a level which a ground material
can withstand; Coulomb's equation is the basis of the assumed behavior of the
ground. Only one pilot problem has been run and the computed results are ex-
tremely interesting although insdequate for use as design inputs. Certain nec-
essary assumptions were found to be unrealistically chosen; this caused some
inconslstencies. Such occurrences are, of course, the rule for first results

from highly complex analyses, and do not affect the validity of the procedure.

The preliminary results, which include the effect of air-blast loading on the
surface, show large attenuvation of stress and energy in the plastic zone. No
results were obtained near the surface, however, because the shallowest ray
vhich was used was at an angle of 18 degrees from the horizontal. The solution
is capable of considering shallower rays (even surface rays) and such rays should
be included in any extensions of the computatims. The most important short-

coming of the computer program, from which these results have been obtained, is

#*3ee Chapter 5, Vol. II
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its lov speed. Another lack is that of a more sophisiticated yield condition

than that used thus far. After these problems are corrected, parametric studies

should be undertaken to show how sensitive results are to ground material prop-
erties. When this has been established, typical earth materials properties
should be used in computations which would be suitable for design inputs for

structures which might be located in the plastic medium.

In addition, based on Newmark's conclusion that interface discrepancies do not
seriously affect the phenomena transmitted across the interface, it will be pos-
sible to combine the bydrodynamic, plastic, and elastic analyses in one solution,
and, further, to include air-induced effects. This cosbination will constitute
the 1irst complete and unified description of ground effects in the close-in
region and beyond Proposed means of accomplishing this are outlined in the

following section.

B. PROPOSED METHODS FOR COMBINING EFFECTS.

The Brooks analysis bhas been shown to be capable of handling the ground stresses
and motions associated with the zone of hydrodynamic behavior. The precise boun-
dary at which behavior changes from hydrodynamic to plastic is unknown and,
indeed, probably does not exist as a definable interface. Therefore, a suitable
radius can be chosen, as was done for the Brooks pilot problem, and inputs to the
plastic analysis obtained from the hydrodynamic stresses and motions. In the
hydrodynamic region air blast effects are trivial, although the hydrodynamic

analysis does include such veffects.
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The plastic analysis, including alr blust effects (which ilnercace in impor-
tance with increasing distance from thc burst) gives results which can be
used to cxtend the description of the phenomena into the clastic regime.

This can be accomplished in three possible ways.

The first method is to continue the elasto-plastic analysis according to

the Brooks equation into the elastic zone. This would not result in the most
detailed estimetes of stresses and strains because the procedure is hindered
by the non-linear features of the plastic analysis which are not recuired for

the elastic solution.

The second method is to use the Newmark analysis in which the stress inputs
into the elastic zone are obtained from the Brooks plastic analysis. Thic
procedure presents no intractable difficulty and appears rather attroctive.
The Newmark analysis must, of course, be extended to points nearer the sur-
face at distances of interest and air blast effects must be added to the des-

eription.

The last method 15 to use a half-gpace solution similar to that of Freeman
Gilbvert fcr the Rayleigh wave problem. The procedure would consist of
applying to the surface of the elastic solid a point source input which is
derived from the energy attenuation factor computed in the plastic analysis.
This procedure is feasible because no energy attenuation takes place in an
elastic body. The characteristics of the surface input can be varied until

a match is obtained between the stresses and motion (at the radius corres-

ponding to the plastic zone limit) in the elastic half-space and those obtained
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from the combined hydrodynamic and plastic analyses. It will be necessary
to choose the source such that sir blast effects are the same as those from a
surface burst or, alternatively, to use superposition to combine a solution
for an air burst (such as the Gilbvert Rayleigh wave pulse) with the surface
source. Since the solutions are linearyno difficulties arise. This last ap-
proach has certain advantages in dealing with locations near the surface but

is not as versatile as Newmark's numerical technique.
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